LLAMA results

All results were produced by using the cross-validation splits in the repository with 10 folds and 1 repetitions.
The best values within a type (i.e., baseline (except for vbs), classif, regr and cluster) and performance measure (i.e., Percentage solved, PAR10, MCP) are colored green. Furthermore, the three best values over all groups within a performance measure are colored pink, the absolute best one is red.

The performance is measured in three different ways.

algo model succ par10 mcp
baseline vbs 0.701 3662.241 0.000
baseline singleBest 0.348 7882.393 404.246
baseline singleBestByPar 0.477 6338.901 254.757
baseline singleBestBySuccesses 0.477 6338.901 254.757
classif meta/AdaBoostM1 0.472 6408.151 249.150
classif bayes/BayesNet 0.583 5084.882 122.752
classif lazy/IBk 0.617 4688.221 92.192
classif rules/OneR 0.518 5864.419 198.247
classif trees/RandomTree 0.609 4776.721 96.207
classif trees/J48 0.596 4928.165 106.843
classif rules/JRip 0.561 5355.749 154.244
classif classif.ctree 0.550 5478.330 164.179
classif classif.ksvm 0.550 5482.914 168.763
classif classif.naiveBayes 0.532 5684.669 173.387
classif classif.randomForest 0.630 4528.243 73.023
classif classif.rpart 0.563 5319.075 145.733
regr regr.lm 0.619 4655.247 87.380
regr regr.rpart 0.559 5360.441 144.855
regr regr.randomForest 0.647 4329.539 57.370
regr regr.earth 0.601 4870.717 105.718
cluster EM 0.473 6391.859 246.939
cluster FarthestFirst 0.472 6408.151 249.150
cluster SimpleKMeans 0.472 6408.151 249.150

The following default feature steps were used for model building:

Pre, Basic, KLB, CG, DIAMETER, cl, sp, ls_saps, ls_gsat, lobjois

Number of presolved instances: 5

The cost for using the feature steps (adapted for presolving) is: 3.761259 × 104 or on average: 49.0385789

The feature steps correspond to the following 115 / 115 features:

nvarsOrig, nclausesOrig, nvars, nclauses, reducedVars,
reducedClauses, vars_clauses_ratio, POSNEG_RATIO_CLAUSE_mean, POSNEG_RATIO_CLAUSE_coeff_variation, POSNEG_RATIO_CLAUSE_min,
POSNEG_RATIO_CLAUSE_max, POSNEG_RATIO_CLAUSE_entropy, VCG_CLAUSE_mean, VCG_CLAUSE_coeff_variation, VCG_CLAUSE_min,
VCG_CLAUSE_max, VCG_CLAUSE_entropy, UNARY, BINARYp, TRINARYp,
VCG_VAR_mean, VCG_VAR_coeff_variation, VCG_VAR_min, VCG_VAR_max, VCG_VAR_entropy,
POSNEG_RATIO_VAR_mean, POSNEG_RATIO_VAR_stdev, POSNEG_RATIO_VAR_min, POSNEG_RATIO_VAR_max, POSNEG_RATIO_VAR_entropy,
HORNY_VAR_mean, HORNY_VAR_coeff_variation, HORNY_VAR_min, HORNY_VAR_max, HORNY_VAR_entropy,
horn_clauses_fraction, VG_mean, VG_coeff_variation, VG_min, VG_max,
CG_mean, CG_coeff_variation, CG_min, CG_max, CG_entropy,
cluster_coeff_mean, cluster_coeff_coeff_variation, cluster_coeff_min, cluster_coeff_max, cluster_coeff_entropy,
DIAMETER_mean, DIAMETER_coeff_variation, DIAMETER_min, DIAMETER_max, DIAMETER_entropy,
cl_num_mean, cl_num_coeff_variation, cl_num_min, cl_num_max, cl_num_q90,
cl_num_q10, cl_num_q75, cl_num_q25, cl_num_q50, cl_size_mean,
cl_size_coeff_variation, cl_size_min, cl_size_max, cl_size_q90, cl_size_q10,
cl_size_q75, cl_size_q25, cl_size_q50, SP_bias_mean, SP_bias_coeff_variation,
SP_bias_min, SP_bias_max, SP_bias_q90, SP_bias_q10, SP_bias_q75,
SP_bias_q25, SP_bias_q50, SP_unconstraint_mean, SP_unconstraint_coeff_variation, SP_unconstraint_min,
SP_unconstraint_max, SP_unconstraint_q90, SP_unconstraint_q10, SP_unconstraint_q75, SP_unconstraint_q25,
SP_unconstraint_q50, saps_BestSolution_Mean, saps_BestSolution_CoeffVariance, saps_FirstLocalMinStep_Mean, saps_FirstLocalMinStep_CoeffVariance,
saps_FirstLocalMinStep_Median, saps_FirstLocalMinStep_Q10, saps_FirstLocalMinStep_Q90, saps_BestAvgImprovement_Mean, saps_BestAvgImprovement_CoeffVariance,
saps_FirstLocalMinRatio_Mean, saps_FirstLocalMinRatio_CoeffVariance, gsat_BestSolution_Mean, gsat_BestSolution_CoeffVariance, gsat_FirstLocalMinStep_Mean,
gsat_FirstLocalMinStep_CoeffVariance, gsat_FirstLocalMinStep_Median, gsat_FirstLocalMinStep_Q10, gsat_FirstLocalMinStep_Q90, gsat_BestAvgImprovement_Mean,
gsat_BestAvgImprovement_CoeffVariance, gsat_FirstLocalMinRatio_Mean, gsat_FirstLocalMinRatio_CoeffVariance, lobjois_mean_depth_over_vars, lobjois_log_num_nodes_over_vars,