10
folds and 1
repetitions.The performance is measured in three different ways.
algo | model | succ | par10 | mcp |
---|---|---|---|---|
baseline | vbs | 0.853 | 3127.236 | 0.000 |
baseline | singleBest | 0.428 | 12057.041 | 903.778 |
baseline | singleBestByPar | 0.769 | 4893.141 | 190.904 |
baseline | singleBestBySuccesses | 0.769 | 4893.141 | 190.904 |
classif | meta/AdaBoostM1 | 0.805 | 4130.846 | 97.338 |
classif | bayes/BayesNet | 0.816 | 3888.785 | 71.030 |
classif | lazy/IBk | 0.826 | 3670.967 | 47.390 |
classif | rules/OneR | 0.807 | 4092.553 | 102.196 |
classif | trees/RandomTree | 0.824 | 3724.295 | 57.568 |
classif | trees/J48 | 0.821 | 3792.070 | 60.617 |
classif | rules/JRip | 0.808 | 4059.149 | 90.367 |
classif | classif.ctree | 0.811 | 4008.208 | 82.577 |
classif | classif.ksvm | 0.813 | 3960.941 | 78.460 |
classif | classif.naiveBayes | 0.689 | 6575.873 | 363.255 |
classif | classif.randomForest | 0.822 | 3767.973 | 58.095 |
classif | classif.rpart | 0.807 | 4080.946 | 90.589 |
regr | regr.lm | 0.822 | 3777.872 | 67.994 |
regr | regr.rpart | 0.821 | 3812.837 | 81.384 |
regr | regr.randomForest | 0.842 | 3345.319 | 23.798 |
regr | regr.earth | 0.828 | 3663.769 | 61.768 |
cluster | EM | 0.805 | 4133.977 | 100.469 |
cluster | FarthestFirst | 0.769 | 4893.244 | 190.901 |
cluster | SimpleKMeans | 0.806 | 4118.855 | 106.923 |
The following default feature steps were used for model building:
group_basics
Number of presolved instances: 0
The cost for using the feature steps (adapted for presolving) is: 132.54
or on average: 0.1513014
The feature steps correspond to the following 37
/ 37
features:
numVars, numClauses, perc_soft, soft_mean, soft_std,
soft_min, soft_max, var_clauses_ratio, vcg_var_mean, vcg_var_std,
vcg_var_min, vcg_var_max, vcg_var_spread, vcg_cls_mean, vcg_cls_std,
vcg_cls_min, vcg_cls_max, vcg_cls_spread, pnr_var_mean, pnr_var_std,
pnr_var_min, pnr_var_max, pnr_var_spread, pnr_cls_mean, pnr_cls_std,
pnr_cls_min, pnr_cls_max, pnr_cls_spread, unary, binary,
trinary, horn_mean, horn_std, horn_min, horn_max,
horn_spread, horn,