LLAMA results

All results were produced by using the cross-validation splits in the repository with 10 folds and 1 repetitions.
The best values within a type (i.e., baseline (except for vbs), classif, regr and cluster) and performance measure (i.e., Percentage solved, PAR10, MCP) are colored green. Furthermore, the three best values over all groups within a performance measure are colored pink, the absolute best one is red.

The performance is measured in three different ways.

algo model succ par10 mcp
baseline vbs 0.853 3127.236 0.000
baseline singleBest 0.428 12057.041 903.778
baseline singleBestByPar 0.769 4893.141 190.904
baseline singleBestBySuccesses 0.769 4893.141 190.904
classif meta/AdaBoostM1 0.805 4130.846 97.338
classif bayes/BayesNet 0.816 3888.785 71.030
classif lazy/IBk 0.826 3670.967 47.390
classif rules/OneR 0.807 4092.553 102.196
classif trees/RandomTree 0.824 3724.295 57.568
classif trees/J48 0.821 3792.070 60.617
classif rules/JRip 0.808 4059.149 90.367
classif classif.ctree 0.811 4008.208 82.577
classif classif.ksvm 0.813 3960.941 78.460
classif classif.naiveBayes 0.689 6575.873 363.255
classif classif.randomForest 0.822 3767.973 58.095
classif classif.rpart 0.807 4080.946 90.589
regr regr.lm 0.822 3777.872 67.994
regr regr.rpart 0.821 3812.837 81.384
regr regr.randomForest 0.842 3345.319 23.798
regr regr.earth 0.828 3663.769 61.768
cluster EM 0.805 4133.977 100.469
cluster FarthestFirst 0.769 4893.244 190.901
cluster SimpleKMeans 0.806 4118.855 106.923

The following default feature steps were used for model building:

group_basics

Number of presolved instances: 0

The cost for using the feature steps (adapted for presolving) is: 132.54 or on average: 0.1513014

The feature steps correspond to the following 37 / 37 features:

numVars, numClauses, perc_soft, soft_mean, soft_std,
soft_min, soft_max, var_clauses_ratio, vcg_var_mean, vcg_var_std,
vcg_var_min, vcg_var_max, vcg_var_spread, vcg_cls_mean, vcg_cls_std,
vcg_cls_min, vcg_cls_max, vcg_cls_spread, pnr_var_mean, pnr_var_std,
pnr_var_min, pnr_var_max, pnr_var_spread, pnr_cls_mean, pnr_cls_std,
pnr_cls_min, pnr_cls_max, pnr_cls_spread, unary, binary,
trinary, horn_mean, horn_std, horn_min, horn_max,
horn_spread, horn,